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Abstract—This paper examines the onset of shear flow localization in thermal viscoplastic materials
at high rates of loading while accounting for the finite speed of thermal wave propagation. It is weil
known that the Fourier’s classical law of heat conduction implies that thermal disturbances travel
with infinite speed. We introduce a modification to the classical Fourier law which renders a finite
speed for thermal wave propagation. We then utilize the energy viewpoint of dynamic localization
introduced in Shawki (Shawki, T. G. (1994), An energy criterion for the onset of shear localization
in thermal viscoplastic materials, part I: Necessary and sufficient initiation conditions. ASME J.
Appl. Mech. 61, 530-537) and (Shawki, T. G. (1994). An energy criterion for the onset of shear
localization in thermal viscoplastic materials, part 1I: Applications and implications. ASME J.
Appl. Mech. 61, 538-547) as well as a linear stability analysis to determine the necessary conditions
for the onset of localization. An exact linear solution is obtained for adiabatic deformations of
thermal viscoplastic materials with no strain dependence. A matched asymptotic expansion is
obtained for the general case involving non-adiabatic deformations of the foregoing class of
materials. The foregoing solutions illustrate the effect of finite speed of thermal wave propagation
on localization initiation. Published by Elsevier Science Ltd.

1. INTRODUCTION

It is well known that the commonly used heat conduction equation based on the classical
Fourier’s law is a parabolic partial differential equation which exhibits the undesirable
feature of predicting that thermal disturbances propagate with infinite speeds. Hence, a
sudden localized heat generation due to plastic deformation is instantaneously sensed
throughout the deforming body. The infinite speed of propagation of thermal disturbances
is physically unrealistic and may lead to erroncous conclusions when the time needed for
the decay of thermal transients is of the same order as the times at which certain physical
quantities are measured in a thermomechanical process.

To overcome this shortcoming, several modifications to the classical heat equation
have been proposed. Such modifications may be broadly classified into two main categories :
(1) modification of the Fourier law and the concept of a thermal relaxation time and (2)
introduction of the temperature rate as an internal state variable in the constitutive equa-
tions while still using the classical Fourier law. An extensive review of these two theories is
provided by Chandrasekharaiah (1986).

Category (1) has received wider acceptance in view of its simplicity. The commonly
used form of this theory produces a Ayperbolic heat conduction equation which results in
finite wave speeds for thermal disturbances. Achenbach (1968) considered the problem of
thermal and mechanical waves propagating in a one-dimensional semi-infinite medium due
to the sudden application of mechanical and thermal disturbances at the free surface. Kim
and Hector (1991) considered the problem of hyperbolic heat conduction in materials
subjected to laser radiation where the times of observation are of the order of nanoseconds.
The usefulness of the modified heat conduction equation in materials with an inhomo-
geneous inner structure is discussed by Kaminski (1990). Experimental methods for the
determination of thermal wave speeds are discussed by Gembaroric and Majernik (1987).
Mason and Rosakis (1992) utilized the hyperbolic heat equation to determine the tem-
perature field in the neighbourhood of the tip of a dynamically propagating crack.
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This paper examines the implications of the finite propagation speed of thermal
disturbances as regards the onset of shear localization in dynamic deformations of thermal
viscoplastic materials. This study is conducted in the context of a one-dimensional simple
shearing motion. This study is motivated by the fact that observations of adiabatic shear
bands are reported at ultra-high loading rates. For example, typical strain rates associated
with Kolsky bar experiments are in the range [10°-10* sec™'. Furthermore, the strain rates
achieved in plate impact experiments belong to the range [10°-107} sec ™. Higher strain rates
are reported in ballistic impact problems. Subject to such high strain rates, deformations in
ductile materials are highly dissipative and involve the release of large amounts of energy
within very short time intervals. Moreover, the formation of adiabatic shear bands in such
deformations leads to greater rates of thermal energy generation within the localized zones.
The high rates of thermal energy generation produce temperature increases of two to three
times in few microseconds. As pointed out by Chandrasekharaiah (1986), for such high
rates of deformation, the classical heat conduction equation may not provide an adequate
account of thermal energy transfer.

The primary mechanism underlying shear band formation at high loading rates is
believed to be a thermo-mechanical mechanism in which most of the generated plastic work
is converted to heat. The generation of heat is highest at sites of maximum plastic strain
rate. The spatially-inhomogeneous generation of heat coupled with material’s thermal
softening leads to the evolution of a spatially inhomogeneous plastic strain rate field. Since
the generation of heat combined with the lack of time for heat conduction are the main
building blocks for this mechanism ; it seems appropriate to examine the issues related to
the time scale of heat transfer. In this paper, we confine our attention to the onset conditions
for shear band formation while accounting for the finite wave speed for the propagation of
thermal energy. Hence, we utilize the linear stability theory developed in Shawki (1994a
and 1994b) and use the energy-based framework for the characterization of localization.
We derive the necessary conditions for localization and compare the results to carlier results
obtained by using the classical Fourier’s law of heat conduction.

It is useful to note that the issue as to whether or not thermal energy propagate with
finite speed is not completely resolved. The issue appears to be whether or not the modified
energy equation can be justified from fundamental quantum mechanics considerations and
whether or not thermal energy propagates as a wave. In this work, we are not addressing
this particular issue. Instead, we are only interested in the implications of such effect on
localization initiation conditions.

2. THE MODIFIED FOURIER LAW OF HEAT CONDUCTION

We follow the model developed by Gurtin and Pipkin (1968) in which the classical
heat conduction equation is replaced by the modified equation

. 0 oo

o1 ox

where 7, is referred to as the relaxation constant, § is the heat flux, 8 is the absolute
temperature and & is the material thermal conductivity. Equation (1) implies that the heat
flux accumulates over a finite time interval in the presence of a temperature gradient. As
the temperature gradient vanishes the heat flux decays exponentially. Gurtin and Pipkin
(1968) estimated the value of the relaxation constant 7, to be

.3
L= 2
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where ¢ is the specific heat of the solid per unit volume and § is the sound (phonon) velocity.
Next, we derive the energy balance ficld equation using the first law of thermodynamics
along with the modified Fourier’s law given by eqn (1).
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2.1. The modified energy equation

In view of our current objective related to adiabatic shear band formation, we make
the following assumptions: (1) no internal heat sources in the deforming body, (2) no body
forces, (3) material properties are homogeneous and temperature-independent, (4) clastic
effects are ignored, and (5) the specific internal energy e is given by cfl. Application of the
first law of thermodynamics provides the energy balance equation

d .
prm=T:D-V-g, 3)

~o 0wy

where ¢é is the specific internal energy, p is the material density, 7 is the Cauchy stress
tensor, D is the rate of deformation tensor and 4 is the heat flux vector. The operator d/dz
denotes the material time derivative. We now specialize eqn (3) to the case corresponding
to one-dimensional simple shearing motion which is schematically illustrated in Fig. 1. The
only non zero velocity component is ¢, = ¢ while all field variables are assumed to only
depend on the space direction £. The normal stresses are shown by Shawki and Clifton
(1989) to have a weak effect as regards shear band formation. Therefore, the relevant
energy balance for the considered simple shearing motion is given by

pei=Poo— o (4)

where ¢ is the shear stress (6,,). Upon substitution of eqn (1) into the energy balance
equation (4), one obtains

o6 o . 030 fﬂ of o\ &6 )
= —F 0 —F =L\ =l0=l—-—| )
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where 7| = B/pé and 7, = R/p¢. It is evident that as the relaxation constant 7, vanishes, egn
(5) reduces to the classical energy balance field equation without heat sources. Since the
modified form (5) involves second temporal derivatives, it follows that a larger set of initial
conditions must be specitied. Furthermore, we note that in the absence of plastic dissipation ;
i.e., for 7, = 0, eqn (5) reduces to the following hyperbolic—parabolic equation:

, 329‘+ o8 o0
L = =7F .
orr ot g2

(6)

r

Examination of eqn (5) or eqn (6) implies that the ratio 7y/f, = &3 plays the role cor-
responding to the square of the thermal wave speed. This renders the rate of heat propa-
gation finite as long as the relaxation constant /, remains strictly positive.

Homogeneous Shear Localized Shear
v(L,H) =1 v(1,t) =1
— e
I =
H=1 Insulated — e
- x boundaries f
—>
v(0,£) =0 y 0(0,4) =0

Fig. 1. A schematic of one-dimensional simple shearing motion.



438 H. P. Cherukuri and T. G. Shawki
3. PROBLEM FORMULATION

This section presents a brief account of the governing equations for the simple shearing
motion of an infinite plate of thickness H subject to constant prescribed velocities as
illustrated in Fig. 1. It is assumed that the problem is one-dimensional in the sense that all
the quantities are only functions of * and /. Further, we consider a homogeneous material
and ignore elastic effects. A constant velocity V; is prescribed at the upper plate boundary
while the lower plate boundary is fixed. The system of equations is given by

=i ®

o0 a0 [ éf. o5\ &0
oi o e [ a—f<" a,e)— ﬂ ©
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where eqn (7) is the balance of linear momentum, eqn (8) the kinematic compatibility
equation, eqn (9) is the modified energy equation and eqn (10) provides alternative forms
of the description of the material’s thermal viscoplastic response.

The superposed ““hat” in the governing equations denotes “‘dimensional’” quantities.
Here, ¢ is the particle velocity in the y direction, & the shear stress, 6 the absolute tempera-
ture, and $° the plastic strain. Furthermore, p the mass density, & the constant heat
conductivity coefficient, and ¢ is a constant specific heat. A superposed “dot” denotes
partial differentiation with respect to the time ¢. Upon appropriate normalization, the
equations retain the same form while the hats are dropped. The dimensionless variables are
defined by

1 =iVy/H x=%{H,0 = 6/6,,9" =y H|V,,0 = 00,1, = i,V,/H, (11)
k= R00/6,HV,, p = pV3[6o,c = é0,/V3, u= /69,1y = RIPEHV,. (12)

In eqns (11) and (12), (V, 6, §,) denote the constant applied velocity, the reference flow
stress and the reference temperature, respectively. The dimensionless form of the equations
will be used throughout this document. The boundary conditions are given by

v(0,) =0, v(l,n=1, 0<t< (13)
0.0, =0,0,0)=0 0<t< 0. (14)

In eqn (14), the notation u . denotes partial differentiation with respect to the subscripted
variable ; that is u, = 6u/ 0x. The boundary conditions given by eqn (14) reflect thermally-
insulated boundaries; i.e., adiabatic boundary conditions.

4. ENERGY-BASED LINEAR STABILITY ANALYSIS

The linear stability theory has been a powerful tool for studies of shear flow local-
ization. Useful information regarding the necessary conditions for the onset of shear
localization can be extracted from a linear stability approach to the considered boundary-
value problem. Shawki (1994a and 1994b) has presented an energy-based theory of local-
ization based on the linear stability approach. The procedure involves the linearization
of the governing equations about a spatially-homogeneous solution and the subsequent
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examination of the temporal behavior of the L2-norm of the linear solution. Shawki (1994a)
points out that the onset of shear localization is tied to positive rates of growth of the
kinetic energy of the absolute perturbations. Here, we utilize this approach towards the
boundary-value problem given by eqns (7-10) along with the boundary conditions (13, 14).

4.1. The homogeneous solution

We seek the derivation of a spatially-homogeneous solution of the considered bound-
ary-value problem for an appropriate set of homogeneous initial conditions. It is straight-
forward to verify that the homogeneous solution for the particle velocity, the plastic strain
rate and the plastic strain is given by

5(x, 1) = X, (15)
() = 1, (16)
P = po+1. (17)

The homogeneous temperature is the solution to the following non-autonomous ordinary
differential equation :

6" ~
S e tr Ly +1.00). a8)

where

C, = 6(0)—r,5(0).

A superposed “bar” denotes a homogeneous solution. Note that taking account of the
finite speed of thermal wave motion requires the prescription of an additional initial
condition as opposed to the case associated with the classical Fourier law of heat conduc-
tion. Here, we choose 8(0) = r,5(0) so that C, = 0. This particular choice renders a homo-
geneous solution which is identical to that associated with the same initial boundary-value
problem but with the classical Fourier law. We make this selection in order to obtain a
consistent comparison of localization initiation in the two cases involving infinite or finite
speed of thermal wave propagation.

5. LOCALIZATION CRITERION

We seek the determination of necessary conditions for the onset of shear localization
while accounting for the finite speed of thermal wave propagation. Hence, we utilize the
linear stability theory within the energy-based framework of localization presented by
Shawki (1994a and 1994b).

5.1. Linear perturbation analysis
We seek a solution of the governing system of eqns (7—10) which satisfies the boundary
conditions (13, 14) and has the following form:

v(x, 1) = x+0(x, 1), (19)
W(x, ) =14 77(x, 1), (20)
P00 =(Go+ 1) +77(x, 1), (21

0(x. 1) = O(H) +6(x, 1), (22)
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a(x, 1) = Y(l,yo+1,0)+6(x, 1), (23)

where the over tildes represent the perturbations superposed on the homogeneous solution.
The function f(z) in eqn (22) is the solution to the differential eqn (18) with the special
choice of C,; = 0. Such a linear decomposition of the solution represents a reasonable
approximation to the nonlinear solution as long as the perturbations remain much smaller
than the corresponding homogeneous quantities; i.e.,

5()(, 1]
I 9_(T)

6(x, 1)
a(r)

7(x, 1)
Vo + (D)

|5(x, )] < 1, « « 1,

s

< 1, ‘

[77(x, 0|« 1, YVOLt<T (24
where T denotes the time at which the first violation of any of the inequalities in (24)

occurs. In other words, T represents the time at which the linear solution 1s no longer valid.
We further note that the perturbations must have the form

o(x. 1) = V() sin(£,x),  7(x, 1) = T,(2) cos(&,x),
G(x, 1) = T,(f) cos(&,x), O(x,7) = ©,(1) cos(é,x), (25)

where ¢, = nmn,n = 1,2,3, ... is the wave number. The form (25) is selected for consistency
with the prescribed boundary conditions. Substitution of eqns (19-23) and (25) into the
governing system of nonlinear partial differential eqns (7-10) while retaining only first
order terms of the perturbations renders a system of linear ordinary differential equations
for the perturbation amplitudes. This system is given by

an(Z) = —énzn(z)’ (26)

&V (0 =T, (27
10,0 +0,(0)+2,0,() =r [Zn(t) +a(nl (1) + t,(in(z)+6(t)fn(r)>], (28)

(0 = SiOL(0+S5:(00,(1) + S5()T, (1), 29)

where o, = 7,¢? is the so-called local adiabaticity parameter and the sensitivities S,
k =1,2,3 are defined by

0 0 0
Slz(lp, S‘):l S Clp

2 3= "
oy’ 80’ ay?
i

The above measures reflect the material’s strain rate sensitivity, thermal sensitivity and
strain sensitivity, respectively. We are concerned with materials for which S, > 0,5, <0
and S; > 0.

Here, we consider the case of a quasi-static deformation of a strain-independent
material. Such a case may be mathematically realized by taking the limit p — 0 and letting
S; = 0. The appropriateness of the quasi-static analysis as far as deriving necessary con-
ditions for the onset of localization is thoroughly discussed by Shawki (1994b). The con-
sideration of a strain independent material response is motivated by the fact that strain
hardening presents a stabilizing effect as far as localization evolution is concerned. Fur-
thermore, the absence of strain dependence allows for the derivation of exact localization
criterion through the energy-based linear stability analysis.
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Examination of eqn (26) indicates that the stress amplitude Z,(7) must vanish for a
quasi-static deformation. Utilizing this result while setting S;(r) = 0 in eqn (29) gives

[0 = F(00,(1), (30)

where F, = —S,/S| = d¢/éo is an alternative measure of thermal sensitivity (note that
F, > 0 for a thermally softening response). Substitution of the relationship (30) is eqn (28)
and further rearrangement yields

10,1 +[1+1,6(0)]8,(1) + (o, + G(1) +1,G(1]O,(1) = 0, (1)
where
_ i‘IO'SQ o
G= s, - roF,. (32)

The quotient G represents the ratio of the slope, C, = S;+7,6S,, of the adiabatic
stress—strain curve at constant strain rate to the material’s strain rate sensitivity. This ratio
often plays a significant role in various analyses of dynamic localization in viscoplastic
materials. Here, we reiterate that the barred quantities refer to evaluations at the homo-
geneous, time dependent solution.

At this point, we follow the framework developed by Shawki (1994a and 1994b) which
associates the onset of shear localization with the positive rate of growth of the kinetic
energy of the absolute perturbations. This criterion can be expressed in the useful form (see
Shawki (1994b) for a detailed derivation)

INGIMGES (33)
Taking advantage of the relationship given by eqn (30) reduces the criterion (33) to

Fyn) 8,0
F?_ (t) + ®n([) Z

0. (34)

Equation (34) is the operative localization criterion applicable to the case considered in the
present work. Knowledge of the quotient ®,(r)/®,(7) in terms of quantities evaluated at
the homogeneous solution and the relaxation time is our main objective.

5.2. Exact solution for adiabatic deformations

An exact solution can be obtained for the case of an adiabatic deformation for which
ro = 0. We set o, = 0 in eqn (31) and divide both sides by the temperature perturbation
amplitude to obtain

0,(1)
0,1

0.0 +[141,G(0]

0,(1) +[G(1)+1,G(n)] = 0. (35)

{

We now introduce the variable @,(1)/0,(f) = Q,(t) which transforms eqn (35) into

(0,04 QH) + 11 +661]10.(0+[G(1) +1,6(1)] = 0. (36)

The above equation is a first order, nonlinear ordinary differential equation which belongs
to the class of equations known as Riccatti equations. It is useful to note that for the case
of a classical Fourier’s law of heat conduction, ¢, = 0, and eqn (36) renders the exact
solution Q,(f) = —G(1). In this case, the operative localization criterion is
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Ey(0)
Fy (1)

+r,6F,(1) >0, (37)

which is identical to the condition derived by Shawki (1994b). For the case when the
relaxation time is strictly positive, it can be easily verified that the function “—G(2)” is a
particular solution which satisfies eqn (36). This suggests the transformation

. 1
0.(1) = _G(ZHJ;,W’ (38)

which provides a linear ordinary differential equation, with variable coefficients, for the
unknown function f,(f). This equation is given by

X - 1
S+ <G(t)— t).f;(t) =L (39)

The exact solution of eqn (39) is obtained in terms of quadratures and substituted in
expression (38) to obtain the desired solution for the quotient Q,(¢) which is given by

exp(—1/t,)

1:(0)B(0, 1) +J, exp(—¢/1,)B(E, 1) d¢

0

Qn([) = - G_(t) + > (40)

where

b

L0 =[0,(0+GO)]™" and B(a,b) = eXp(-J

a

G(n) dn>.
The localization criterion for the considered case of an adiabatic deformation becomes

F:(l)
F(1)

exp(—4/t,)

1.(0)BO, )+ J exp(—¢/1)B(C, 1) dg

0

—G()+ > 0. (41)

It is interesting to observe that at the initial time, ¢ = 0, the localization criterion associated
with the classical Fourier’s law requires

F,(0)
F,(0)

+r,6F,(0) >0, (42)

while the localization criterion associated with the modified Fourier law requires

F5(0)
F.0) +0,(0) > 0. (43)

The criterion (43) involves the initial values of the temperature perturbations as well as its
time derivative. On the other hand, the criterion (42) depends only on the initial homo-
geneous solution regardless of the initial conditions on the temperature perturbation. In
other words, the criterion (42) correlates the onset of localization to the structure of the
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material’s constitutive description without regard to the amplitude of the initial pertur-
bation. However, accounting for the finite speed of thermal wave propagation yields a
localization initiation prediction which allows for localization inhibition through appro-
priate selection of the initial values of the temperature perturbation.

5.3. Singular perturbation analysis

The exact solution (40) involves quadratures and applies only to the case of an
adiabatic deformation. Further understanding of the role of the relaxation time 7, requires
an asymptotic solution which distinguishes the two time scales which are evident from an
examination of the solution structure given in eqn (40). It is important to note that the
relaxation time ¢, is a very small parameter compared to unity. As long as the function G(¢)
is of order one, then eqn (35) exhibits non-oscillatory solutions. Hence, the exact solution
is expected to vary rapidly near the initial time s = 0 while varying smoothly for large times.
Next, we utilize the method of matched asymptotic expansions towards solving the eqn
(35) with a small relaxation time. The equation may be rewritten as follows :

L,0,()+[1+1,G(D]0,(0)+[P(1) + 1, P(1)]®,(t) = 0, (44)
where P(1) = a,+G(1).

5.3.1. OQuter solution. We seek an outer solution which approximates the solution of
eqn (44) for times away from the initial time 1 = 0. The outer solution has the series form

Ot t) =T+ 1, T (D+ 5T () +- . (45)

Substitution of the expansion (45) into eqn (35) yields the following equations for the
zeroth and first order outer solutions:

To()+ P(DTo(7) = 0, (46)
T (1) + P()T (1) = — o, P(1) T4 (1), (47)
The above equations have the following exact solutions:

To(1) = To(0)u(0, 1), (48)

T (1) = u(, t)l:Tl (0) =2, To(O)f P(S) di]a (49)

0

where u(0,7) = exp[— j'Q,P(g”)dé]. It is useful to note that in the absence of heat conduction,
the function u(0, t) reduces to B(0, ¢). The integration constants T,(0) and T,(0) are to be
determined through the matching with the inner solution. The outer solution, accurate to
second order, is given by

©,(1;4) = (0, 1) |:To O+ {T; 0)—a, To(O)JI P(S) df}] +0(1,)*. (50)

5.3.2. Inner solution. The inner solution, near f = 0, is expected to vary rapidly and
therefore it suggests the introduction of a fast variable. A natural choice is

-IN

(51)

~

’

Making the change of variables (51) reduces eqn (31) to
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d’e,

u2

- de, _
+ (1 +4,G (1)) '&l'l" +4,[P(t) +1,P (4u)]®, = 0,

with the associated initial conditions

| 4@ (0 .
00 =0, ~ 16,

(52)

(53)

Note that the first initial conditions is of order one while the second is of order 7,. Now, we

seek an inner solution of the power series form

O,u;t,) =F(w+1.F W+ .

(54)

Substitution of the foregoing expansion into eqn (52) and collecting the coefficients of equal

powers of 7, givest

&EF, dF,

e =0,
du? du
*“Zeroth-order system”,
dZ,(0
Fo(0) = 0,, ol ):0
du
and
d&*#, dF - dF
S = =G0 —PO)F,
du? du du .
“First-order system”.
d#F (0 .
=0, 1Y _g,
du

The exact solutions for the functions % (1) and & |(u) are given by
Fo(u) = 0,
F () = ©,[{P(0)+0,(0)} (1 —e ) —uP(0)].
The inner solution, accurate to second order, is given by

©,(u;1,) = O {1+ 4[{P(0)+ 0. (0)} (1 —e™) —uP(0)]}.

(55)

(56)

(57)

(58)

(59)

5.3.3. Matching. We utilize the van Dyke’s matching technique to match the inner and
outer solutions which leads to the determination of the two unknown constants 7,(0) and
71,(0). For this purpose, the two-term inner expansion of the outer solution is matched with

T Note that the time-dependent coefficient functions in eqn (52) can be expanded as follows:

G(r,u) = G0)+ 1,6 (0)u+ O(t2),
P(t,0) = P(O) +1,P (O)u+ O(s2),

P () = PO)+ 1, P (0)u+O(1]).

where a “prime” denotes differentiation with respect to the enclosed function argument.
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the two-term outer expansion of the inner solution. The two-term inner expansion of the
outer solution is given by¥

(Gg)i(mr ;1) = Toy(0) + tr{Tl 0)—T, (O)P(O)“} + O(tr)z (60)

while the two-term outer expansion of the inner solution is given by
; , t
@)1, 51) = O, [1 + 1, {[PO)+Q,(0)](1 —e™")} — ;P(O)}P o(1;). (61)

The van Dyke matching principle requires that

lim [(©5)/(¢:4,)] = lim [(©0)° (1/1,:1,)] (62)

which provides the two unknown constants
T5(0) = ©,, T,(0) = ©,[P(0)+ Q,(0)]. (63)
The composite solution, that is uniformly valid for all ¢, is given by
0,(1) = ©,(1)+6,() —(©,)° (1)

which upon substitution of eqns (50), (59) and (61) reduces to

0,(1) = Oy u(0, l)[l +lr{[P(0)+Qn(0)](1 —u (0, l)e””')—anJ P({) déﬂ- (64)

0

It is evident that the contribution of the inner solution to the uniformly valid composite
solution (64) is of order .. However, the contribution of the inner solution to the time
derivative of the composite solution is significant at early times. The time derivative of the
composite solution is given by

O _ _ iy 4 1p(0) + 0,0
@i(r) 0,0

+0(1,). (65)
Upon substitution of the foregoing quotient into the localization criterion (34), we obtain

B0 iy 1p0) + 0,005
Fy(1) (0,0

> 0. (66)

At the initial time 7 = 0, the localization criterion (66) reduces to

T Note that

w0, ) = u(0, t,u) = 1 —1,POYu+ O(t}),

t
P(&)d¢ = 1, P(Qu+O(1}).

v
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£3(0)
F>(0)

+0,0) >0

which is identical to the condition (43) derived earlier for the case of an adiabatic defor-
mation.

5.4. Application to power law hardening materials
Consider a strain-independent material whose thermal viscoplastic response is modeled
by the empirical power law

o= 0'(3")", (67)

where v < 0 is the thermal softening exponent while m > 0 is the strain-rate hardening
exponent. Upon substitution of the homogeneous temperature solution

0(ty = [14+r (1= "
into expression (66), we obtain the relevant localization criterion
h(l, tr9 O(n) =7 (P" 1)[1 —L(l, 1, :xn)] _anf(t) + [O(,, + Qn(o) —rl]L(t; t, OC,,) > 0’ (68)

where
L(tstye) = o WML 00 f = 1k (1-vt, p=— . (69)
m

We note that L(0;z,a,) =1 while L(z;0,a,) = 0. Hence, we may isolate the following
limiting localization criteria :

Fourier law Diffusion Localization criterion
r=0 t>0 tt, =
Classical ry # 0 Z—o2,>10 Z—of(1) >0 N/A
ro=10 p>1 p>1 N/A
Modified ro # 0 0.(0) > r, h{tit, o) >0 Z—u,f() >0
ro=0 0,(0) > r, h(t:1,.0) >0 p>1

where Z = r(p—1).

6. ANALYSIS AND CONCLUSIONS

We examine the implications of the various localization criteria compiled in the table
at the end of Section 5.4. Hence, we make the following general observations :

1. General observations
(a) The localization initiation criterion associated with the classical Fourier law is
obtained from (68) by setting ¢, = 0. This gives
ht;o) =ri(p—1)—a,flt) > 0. (70)

(b) The necessary condition for localization initiation is independent of the initial
conditions for the classical Fourier law while it depends on the quotient
0,(0) = 0,(0)/0,(0) for the modified Fourier law.
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The necessary localization condition associated with the modified Fourier law
reduces to that associated with the classical Fourier law for large values of #/1,.
Hence, the effect of the modified Fourier law is restricted to the early times
(t/t, ~ O(1)).

2. Adiabatic deformation and small relaxation time

()

(b)

For sufficiently small values of the relaxation time 7, combined with an adiabatic
deformation, the left side of the localization inequality (68) reduces to

lim
1‘:111

1, <<

Bt 0,) = H@) = 1y (p— 1D+ [Q,0) —riple™. (7n)

The behavior of the above function is illustrated in Fig. 2. The profiles illustrated
in Fig. 2 are obtained for values of the quotient Q,(0) in the range [— 10, 18] with
an increment of ““4”. These profiles are computed for a power-law material with
the following dimensionless numerical values for various parameters: v = —0.38,
m = 0.019, r, = 0.5 and, r, = 0. It 1s important to observe that the function H(u)
does not depend explicitly on the relaxation time 7,. For small values of 7,, the time
interval over which those profiles change before they approach their asymptotic
limit, »,(p—1), is rather small. In fact, this behavior suggests that the effects of
modifying the Fourier law are constrained to a very narrow initial interval for
which u = ¢/t, < 5.

For p > 1 (thatis; v+m < 0), the asymptotic long-time limit of the function H(u)
is r(p—1) > 0. As indicated in the Fig. 2, the H(u) profiles corresponding to
0.(0) < r, are initially negative with a positive slope. Each of these profiles exhibit
a critical value of u, called u,,, after which it attains positive values. The critical u
is given by

P—0,(0
u(,.zlog[%:l, p>1. 0,0) <r,. (72)

The critical time w, signals the onset of shear localization following an initial
retardation of localization by the thermal waves effects.

3. Diffusion effects

(a)

The necessary localization condition for the classical Fourier law with heat con-
duction effects predicts an initial wavelength threshold below which perturbations
do not localize. Such an initial wavelength threshold is absent from the localization
condition associated with the modified Fourier law. This observation is strictly
applicable to the initial time ¢ = 0.

(b) The critical value of the local adiabaticity parameter #,, called «,,, i1s given by

H(u) 4
Qn(o) >Tp
15 t
Z = -1
Qn(O) > 10] Tl(P )
T 5
1 2 3 4 > Qu(0)<mp
l -5 / u=t/ft,
@n(0) <rm 10

Fig. 2. Behavior of the localization function H(u).
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(c)

(d)

()
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Aoy = Ty 5(2’ =Fr (P_ 1) (73)

The foregoing expression combined with the criterion (70) indicate that all wave
numbers (lengths) greater (smaller) than &, (/, = 1/£,,) are stable.

The behavior of the function A(¢; ¢,, o) for values of «, < a,, is illustrated in Fig.
3. This figure illustrates the dependence of the localization initiation criterion on
the quotient Q,(0) as well as the local adiabaticity parameter «,. The shown profiles
are computed using the same numerical values as in Fig. 2 with the addition of
t, = 0.01. The value of «,, for the considered computation is ©“9.5”. Furthermore,
the shaded plane in each figure corresponds to 4 = 0. Therefore, portions of the
h-surface below the shaded plane correspond to a stable response while those
above the plane correspond to a localizing response. Fig. 4 illustrates the behavior
of the function A(¢; t,, %,) for values of «, > «,,.

It is important to observe that, for the classical Fourier law, each of the three-
dimensional graphs will reduce to a plane surface whose height is “Z — o, /()"
independent of the axis Q,(0). Hence, in contrast to the classical Fourier law, the
present model predicts some initial retardation of localization for some range of
the initial values and for o, < «,,. On the other hand, the model also predicts the
possibility of initial localization for some range of the initial values and for «,, > «,,.
Figure 5 shows the contours of A(r;¢,,2,) =0 in a 1—Q,(0) plane for various
values of «, € [0, 20]. Examination of Fig. 5 indicates that

e For o, <9.1: The delay in localization initiation, for a fixed negative value of
0.,(0), increases with increasing wave numbers.

e For 2,< 9.4: The initial localization, for a fixed positive value of Q,(0), is
suppressed faster for larger wave numbers.

In closing, it is useful to note that typical relaxation times for structural steels are of the
order of 107° seconds. Dimensionless values of the relaxation time ¢, are of the order of
10~¢ for Kolsky bar tests while they are of the order of 10-*-107? for plate impact
experiments. Hence, it is reasonable to conclude that the effect of modifying the Fourier

h,(t, trs Oln)

Fig. 3. Behavior of the function A(f;1,,2,) for a, < x,,.
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o, =125

A
225
£ x.,“",:?
¥,

Fig. 4. Behavior of the function (1 ¢,,a,) for a, > a,,.

law on localization initiation is very weak. In other words, the effects of the finite speed of
thermal wave propagation on the onsct of shear flow localization can be ignored for
deformations at the applied strain rates of 10° sec™' or less. On the other hand, for plate
impact tests, the observation times are often of the order of the time during which the
elastic waves can traverse the specimen two or three times. Since the thermal wave speed is
much smaller than the longitudinal wave speed, this implies that the thermal waves may
be of importance in plate impact problems. For ballistic applications, the dimensionless

Qer = 9.5

15

10

-10

Time ¢
Fig. 5. Contours of A(7:f,..a,) = 0 for various values of ,,.



450 H. P. Cherukuri and T. G. Shawki

relaxation time is of order one and, therefore, the results of the asymptotic analysis of the
present paper cannot be used.

The finite wave speed of thermal wave propagation is expected to have a significant
effect on localization evolution during severe localization in view of the large local strain
rates within the localized zones. Further work is required to resolve this issue.
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